
Teaching Statement

John V. Monaco
Email: contact@vmonaco.com

Website: www.vmonaco.com

January 15, 2018

1 Philosophy

I have come to realize, and appreciate, that there is a fundamental interplay between
teaching and research which can amplify the productivity of both in a kind of positive
feedback loop. Successfully explaining a concept, which appears novel to the student,
requires the innate ability of the instructor to decompose an idea into its primitive
components, analogize to concepts the student has already mastered, and recast the
problem if necessary. As these concepts provide the foundation for computer science,
the process of distillation forces the instructor to keep their tools for research sharpened.
Consequently, I have found that the mastery of basic computing principles taught to
students, such as function growth, computer architecture, and software patterns, can
greatly speed up the innovation and discovery process which is so vital to research.
Conversely, research can breathe new life into even the most basic concepts that are
taught. This is important in education so as to demonstrate the relevance of old ideas
to new problems. For example, my work in modeling user behavior has shaped the way
I present exploratory data analysis techniques, often using an example or sample data
from my research for motivation.

2 Pedagogy

I am fortunate to have been taught by several wholly inspirational and passionate pro-
fessors. As a result, my goal as an educator is to impart future students with this same
inspiration to learn. This process is more of an art than a science and depends largely on
the particular student. However, as I continually strive to improve through self reflection
[2], I have found the following pedagogical patterns to enable student success.

Appeal to student interests. If at all possible, I will tailor a specific project or assign-
ment based on the interests of the student. For many students, relevancy to personal
goals becomes a strong source of motivation in attempting to master the material and
transition their newly acquired skills outside the classroom. As Teaching Assistant for

1



Computing Projects, a graduate-level course that integrates software engineering and
data analysis, I had the freedom to specify project requirements based on the interests
and capabilities of the students. For students that expressed an interest in machine
learning, I would specify a project that emphasized the scientific method and introduced
them to the latest tools for data analysis that I use myself (e.g., the Python stack,
numpy+pandas+scikit-learn). For students that expressed an interest in engineering
and systems design, I would specify a project that involved a software deliverable, such
as a web interface for biometric data collection. All students were required to write a
whitepaper and present their results throughout the course, and I found that appealing
to their interests within the scope of the course objectives led to an overall greater chance
of success.

Foster team building and collaboration. Shaping a curriculum around team exercises
and collaborative projects can be extremely rewarding for students, especially in the
development of skills beyond computing. Besides equipping the student with soft skills
which complement their core competencies, engagement with and between students is
more authentic in a team environment. I find that this effect is generally amplified when
some aspect of competition is introduced. For example, when teaching introductory
cryptography to middle and high school students, I organized team-based cryptanaly-
sis competitions. As the problems increased in difficulty, from simple monoalphabetic
ciphers to polyalphabetic and transposition ciphers, the student teams were forced to
apportion the workload amongst each other. In this way, my students often learned just
as much from each other by sharing their own strategies as they did from my lecturing.

Empower growth from student to collaborator. I have had the pleasure of working with
many talented students, ranging from STEM outreach at the middle and high school
levels to graduate-level teaching. For many students, education is a kind of transition
period wherein they prepare for their desired role post-graduation, whether it be industry,
academia, or government. Providing the student with the opportunity to be seen as a
collaborator, and not an apprentice, can help build the independence and confidence
needed to successfully make this transition. At the graduate level, this may involve
seeking input on some of my own work, and if a student expresses a particular interest,
proposing a joint publication. This can also serve to recruit talent for my own research
agenda which itself is often shaped by student interests and capabilities. As an example,
I recently published a joint patent with an undergraduate student who proposed his own
ideas based on interest in my research [1].

Demonstrate my own passion. Finally, I have discovered that one of the best ways
to inspire has been to share my own personal experiences. When relevant, I will share
with students my open source software projects, favorite books and authors, and intro-
duce them to my own personal sources of admiration in computer science. For example,
as Teaching Assistant to Pattern Recognition and Machine Learning, I would introduce
techniques using one of my own research problems as motivation. One exercise I designed
required the students to record the confidence scores from a commercial biometric au-
thentication platform and calculate error rates (type I and type II) at different threshold
settings. This exercise served to introduce binary classification and receiver operating
characteristic (ROC) curve analysis.

2



This list is by no means complete, and I see these patterns as complementary to,
and not to be used in place of, traditional pedagogical patterns, such as well-defined
course objectives, a grading reward system, and periodic tests of aptitude. The tools to
deliver the above patterns also vary widely; for example in a collaborative environment, a
grading scheme can be designed to emphasize the complete deliverable of an entire team
while also taking into account individual contributions. Also notably missing from the
above list is an emphasis on effective writing, which I consider to be one of, if not the
most, important skill at the graduate level. In many fields, it is difficult for one’s work to
achieve high impact without clearly communicating the process and results. This is a skill
that I continue to improve myself and try to bestow upon my students, especially those
performing research. As Teaching Assistant for Computing Projects, I have emphasized
effective writing by holding periodic paper reviews throughout the course, much like an
external peer review, so as to provide students with an opportunity to incrementally
improve their work instead of waiting until the end for feedback. This also helps me gain
a better understanding of the student’s capabilities and thought process throughout the
course.
With my background in computer science and experience educating a diverse body

of students, I am comfortable advising graduate-level research and teaching both under-
graduate and graduate-level courses on machine learning, algorithms and data structures,
introductory programming, and software engineering.

References

[1] Jordan A. Berger and John V. Monaco. Universal keyboard. US Patent No. 9,864,516.
Filed on 27 July 2015. Published on 9 Jan 2018.

[2] Charles C. Tappert, Andreea Cotoranu, and John V. Monaco. A real-world-projects
capstone course in computing: A 15-year experience. In Proc. EDSIG Conference on
Information Systems and Computing Education (EDSIGCON), 2015.

3


